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A decade ago, Budakian and Putterman �Phys. Rev. Lett. 85, 1000 �2000�� ascribed friction to the formation
of bonds arising from contact charging when a gold tip of a surface force apparatus was dragged on polym-
ethylmethacrylate surface. We propose a stick-slip model that captures the observed correlation between
stick-slip events and charge transfer, and the lack of dependence of the scale factor connecting the force jumps
and charge transfer on normal load. Here, stick-slip dynamics arises as a competition between the viscoelastic
and plastic deformation time scales and that due to the pull speed with contact charging playing a minor role.
Our model provides an alternate basis for explaining most experimental results without ascribing friction to
contact charging.
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I. INTRODUCTION

Despite its long history, several aspects of friction remain
ill understood even today. This can be partly attributed to the
fact that mechanisms contributing to friction are scale depen-
dent and those operating at lower scales contribute to friction
at higher scales. The situation is further complicated as sev-
eral other factors such as the possible presence of interfacial
layer between the contacting surfaces, plastic deformation of
the contacting asperities, contact electrification, etc., are also
known to contribute. Recent advances in friction force mi-
croscope and surface force apparatus �SFA� have provided
useful tools to understand friction at these scales.1–4 This
coupled with large-scale molecular dynamics �MD�
simulations5,6 have provided a better understanding of the
mechanisms that contribute to friction at nanometer contacts
and their relevance to macroscopic friction. Experimental
studies show that Amontons’ law �the linear relationship be-
tween frictional force and load� holds in a number of situa-
tions �from nanometer to macroscopic dimensions� when ad-
hesion is small or the surface is rough �either dynamically
induced or otherwise1–4�. However, smooth adhesive con-
tacts follow Johnson-Kendal-Roberts �JKR� theory.7,8 Recent
MD simulations support experimental findings to a large
extent.5,9

In contrast, the dynamical aspects of intermittent fric-
tional sliding are less studied.2,3,10 Efforts to understand
stick-slip dynamics have established that plastic deformation
of the contacting interfacial material is responsible for
slip.9–16 A decade ago, Budakian and Putterman,17 proposed
a new point of view that friction is due to the formation of
bonds arising from contact charging. This claim however is
at variance with earlier studies that show negligible contri-
bution from contact charging to friction18–21 for charge den-
sity �108 charges /mm2 reported in Ref. 17.

The authors demonstrate a correlation between stick-slip
events and charge transfer when the gold tip �radius 0.5 mm�
of the cantilever of a SFA was dragged with a velocity of a
few micrometer per second on polymethylmethacrylate
�PMMA� surface.17 Typical measured charge density
�108 charges /mm2. The magnitude of the slip events is pro-
portional to the ensuing charge transfer to the PMMA sur-

face. Interestingly, the total force and the total charge depos-
ited over a scan length collapses onto a single curve when an
appropriate choice of a scale factor � is made. The value of
��0.4 eV /Å is close to the energy window for transfer of
charge between the surface states of PMMA and metallic
Fermi level.21 Further, the authors find � to be nearly con-
stant in the range of normal loads Fn from 68 to 106 mN.
Based on these observations, they ascribe frictional force to
the formation of bonds due to contact charging at the inter-
face. Snapping of bonds leads to slip. There is no model that
explains these intriguing results. Our purpose is to construct
a model that captures the major results.17 Our model pro-
vides an alternate explanation for the observed correlation
and the lack of dependence of the scale factor � on normal
load. The threshold for slip is determined by plastic defor-
mation of the interface material10,12 while contact charge
plays a minor role.

II. BACKGROUND

A. Motivation and approach

A notable feature of stick-slip systems is that the stick
phase lasts much longer than the slip phase. Then, it is intu-
itively clear that charge builds up during the stick phase and
charge transfer to the PMMA substrate occurs during the slip
phase. In view of this, our idea is to first construct a stick-
slip model based on contact mechanics of single asperity
contact and other relevant physical processes, and couple it
to charging and charge-transfer equations. Then, as the con-
tribution from contact charging to friction is small,18–22 we
expect the correlation between slip events and charge trans-
fer should follow. Indeed, if one is interested in bringing out
the correlation between stick-slip events and charge transfer
only, a “toy” model for stick slip that includes velocity weak-
ening law as an input coupled to charging and charge-
transfer equations is adequate. Such a model has been shown
to reproduce the required correlation.23 However, as our in-
terest is to recover most experimental features, we attempt to
include all relevant features of friction and contact mechan-
ics.

Sliding friction is well recognized to be a complex phe-
nomenon with multiple possible scenarios depending on the
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precise experimental conditions.1,9 The nature of the results
depend on variety of factors such as the size of the tip radius
�typically 10–100 nm radius for AFM and millimeter to cen-
timeter radius for SFA�, the load levels, the nature of con-
tacting materials, the nature of the initial and final micro-
structures of the tip and the substrate �smooth or rough�, the
magnitude of adhesion or the presence of intervening layer,
etc.1–4,9 For example, very different conditions such as low
adhesion and rough or damaged surfaces can lead to similar
friction-load relationship.1–4 For our case, such detailed in-
formation on the precise experimental conditions on the mi-
crostructure of the gold tip or the nature of surface of the
PMMA substrate before and after the scan, is not provided in
Ref. 17. In view of this and in view of the fact that any
model building effort to understand the stick-slip dynamics
requires quantitative information on the contact area, we use
contact mechanics as the basis of our model. Moreover, the
JKR theory has been validated in a number of SFA-like situ-
ations.

B. Single asperity contact, viscoelasticity, plasticity,
and contact charging

By necessity our approach to modeling will be dynamical.
The idea is to construct a stick-slip model that builds on
known results for elastic deformation of the contacting sur-
faces by adding contributions from viscoelastic and plastic
deformations of the contacting surfaces. Contact mechanics
offers a mathematical basis for quantitative description of
contact radius and penetration depth. The theory, deals with
smooth nonadhesive and adhesive contacts, is designed as an
equilibrium theory. Yet, experiments show that it is appli-
cable to a number of sliding conditions as well.1,2,9,24 Non-
adhesive contact was addressed by Hertz later extended to
adhesive contacts by Johnson-Kendal-Roberts and later by
Maugis.7,8,25 In these theories, the area of the contact is a
sublinear function of the normal load Fn.7,25 As the Hertz
contact area differs less than 5% from the JKR contact area
�for normal loads Fn and tip radius R used in Ref. 17�, we
use the Hertz’s contact area An given by An=�a2

=��3RFn /4E��2/3=�Rz. Here, a is the contact radius, z is
the penetration depth, and E� is the effective elastic constant
�of the contacting materials�. The value of a is �23 �m for
load Fn=0.1 N. Thus, the estimated value of stress is
�60 MPa that is higher than the compressive yield stress of
PMMA �Ref. 26� but smaller than the yield stress of gold
�80 MPa. �See Table I.� Thus, the plastic deformation is
largely confined to the weaker PMMA material. This view is
supported by MD simulations as well.9,13–16

Quite early, it was shown that accelerated creep of the
asperities leads to slip.10 Later studies show that stick-slip
instabilities arise from two competing mechanisms, namely,
“geometric aging” of the contacting asperities and “rejuve-
nation by motion due to plastic deformation.”11 Models for
stick-slip instability have been proposed using these
ideas.10,11 Indeed, aging kinetics of contacting asperities has
been used to derive a “N”-shaped velocity-dependent friction
coefficient,12 a generic feature of most stick-slip
systems.10,11,27 Dislocation assisted model for frictional slid-

ing has also been suggested.28 Further, MD simulations also
show plastic deformation of the contacting interfacial mate-
rial and possible transfer of material between the contacting
surfaces.9,13–16 Thus, we consider plastic deformation of the
interfacial layer is responsible for slip.

Even though the subject of contact electrification is rather
old, the mechanisms underlying the charge transfer between
a metal and polymer are still debated.21,22 However, the fact
that contact electrification contributes to adhesion is well
recognized. A number of early studies suggest small contri-
bution to adhesion18–22 for the charge levels reported in Ref.
17. An estimate of the adhesive force from contact charging
can be obtained by considering a charged double layer
formed at the interface. Noting that contact charging can
occur only at the area of contact given by An=�a2=�Rz, the
attractive force is given by �Rz�2 /2�0�, where � is the
charge density, �0 is the vacuum permittivity, and � the di-
electric constant. Using the contact radius �a�23 �m for
normal load 0.1 N�, the force of attraction is �10−9 N that is
several orders of magnitude smaller than milliNewton force
drops observed in experiments.17

Here, it is pertinent to point out that the bond formation
attributed to contact charging is very different from conven-
tional bonds formed when two atomically “clean” flat sur-
faces are brought together or when two surfaces are pressed
together. The bonds so formed would have all the relevant
electronic contributions �such as kinetic energy of the elec-
tron charge density, the long-range electrostatic interaction,
exchange energy, correlation energy, etc.�. In addition, there
could be charge transfer also when the Fermi energies of the
two metals are different or when a metal is in contact with a
suitable polymer, as in this case. Indeed, the process of
“bond formation” is well mimicked by MD simulations that
use appropriate “potentials” by switching on the interaction
between atoms of the two surfaces when they are brought
into contact.

To summarize, we list the basic ingredients of our model.
First, as stated earlier, we assume that the mechanics of
single smooth asperity in contact with a smooth surface is
valid for the current situation.7,8 Second, we note that
PMMA is a much softer material compared to gold and is a
viscoelastic material so that we include viscoelastic contri-
bution for the deformation. Third, as shown above, for the
load levels and tip radius in the experiment, stress level can
exceed the yield stress of PMMA but remains less than that
of gold. Thus, we assume that the dissipation is confined to
the weaker PMMA material. �Note however, due to the
mean-field nature of our model, our model does not have any
scope for dealing such details as where the dissipation oc-
curs.� Finally, we include the frictional resistance arising
from contact electrification. Thus, in view of the fact that
stick-slip dynamics arises from the interplay of all internal
relaxational time scales with the applied time scales, we ex-
pect that the inclusion of time-dependent contributions aris-
ing from viscoelasticity and plastic deformation of the con-
tacting interface material will lead to stick-slip dynamics.

III. MODEL EQUATIONS

Our stick-slip model �similar to that of Ref. 29� describes
the center of the contact area x and penetration depth z. Our
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equations are of the general form mÿ=Fa−Fr, where y rep-
resents x or z, m is the mass of the gold tip, Fa is the applied
force �shear force F or normal force Fn�, and Fr is the total
material response. In equilibrium, Fa=Fr. However, in dy-
namic conditions, there is always an imbalance between the
applied force and material response due to time-dependent
responses from viscoelastic and plastic deformation.

Consider motion in the x direction. The reaction force Fr

is the sum of the frictional force Ff, the adhesive force from
contact charging, and time-dependent contributions from vis-
coelastic and plastic deformation. Frictional force exerted by
the tip on the substrate is Ff =	0Ax, where 	0 is interfacial
shear strength and Ax is the projected area in the x direction.
The latter is obtained by assuming a parabolic tip �defined by
x2=2Rz� that gives Ax� 2

3��2Rz3/2=Ax,0z3/2. In our model,
we include both viscoelastic and plastic deformations of in-
terfacial material. Viscoelastic effects are generally included
by replacing the elastic stress 	 by time-dependent viscoelas-
tic stress 	+
�̇, where 
 is the viscosity and �̇ is the strain
rate.29,30 Then, the viscoelastic creep contribution is

�Axẋ /D=
�Ax,0z3/2ẋ /D, where 
� is the shear viscosity in
the x direction with D a length scale to be fixed.

The contacting asperities undergo plastic deformation be-
yond the yield stress 	y. The general phenomenological ex-
pression for plastic strain rate of crystalline materials is
given by �̇p= �̇0 exp�−

�F−	Va

kT �, where �F is the change in the
free energy, Va is the activation volume, 	 is the stress, and
�̇0 is an appropriate prefactor. This expression has been
adopted for the case of polymers as well.26 However, this
contains several parameters that are unknown for PMMA.
An alternate phenomenological expression for plastic strain
rate of crystalline materials that has been used is given by
�̇p= �̇0�	 /	y�n, where 	 is stress, 	y is the yield stress of the
material, n an exponent, and �̇0 is the strain rate at some
specified value of the stress.27,31–33 This expression has been
successfully used even in the case unstable intermittent plas-
tic flow.27,32,33 To minimize the number of parameters, we
have adopted this expression for plastic deformation of the
interface material. In the physical context, we identify the
threshold stress 	0 with the yield stress of the softer PMMA
material. Noting that the deformation is continuous beyond
the linear viscoelastic flow into the nonlinear plastic flow
regime, the total contribution from these two flows can be
written as 
�Ax,0z3/2 ẋ

D �1− � F
Ax,0	0z3/2 �n�.34 It is clear that when

F�Ax,0	0z3/2, the flow is resistive. This changes over to
strain rate softening flow when F exceeds the threshold force
Ax,0	0z3/2 as the flow rate increases abruptly. Finally, we in-
clude the frictional resistance from contact charging given by
�An�2 /2�0� with � referring to the frictional coefficient. We
note here that the magnitude of the contact charge contribu-
tion �which is �nN for the charge level in Ref. 17� is several
orders of magnitude less than the magnitude of the force
drops �of milliNewton� in experiments. In contrast, the fric-
tional resistance that is �1 mN as can be verified by using
the value of 	0�10 MPa and z=a2 /R in Ax,0	0z3/2 �Table I�.
However, the frictional resistance from contact charging can
become important when the contact charge density is
high. Then, the inclusion of this contribution increases the

threshold force for slip from Ax,0	0z3/2 to Ax,0	0z3/2

+��Rz�2 /2��0. Then, the equations for x and F are

mẍ = F − Ax,0	0z3/2 − ��Rz
�2

2��0
− 
�A�z�

ẋ

D

�1 − 	 F

Ax,0	0z3/2 + ��Rz�2/2��0

n� , �1�

Ḟ = K��Va − ẋ� , �2�

where A�z�=Ax,0	0z3/2. In Eq. �1�, F=−K��x−Vat� is the ap-
plied force with t, K� and Va referring, respectively, to time,
the effective lateral spring constant and applied velocity.
Equation �2� is the differential form of F. We further make
two choices. The first choice is to use A�z�=A0, a constant
�a2. Most of the results presented here are for Model I. The
second choice is to retain A�z�=Ax,0z3/2. We refer to this as
Model II. As we shall show the results of Model II are simi-
lar to those of Model I.

Following a similar approach, the equation for z is the
difference between the normal force Fn and the upward re-
sponse of the material Fr. This is the sum of elastic contri-
bution and contributions arising from the time dependence of
viscoelastic and plastic deformation processes. The elastic
response is given by 4

3R1/2z3/2E�. Note that in equilibrium,
the balance between the normal load Fn and the elastic re-
sponse gives the Hertz relation a2=Rz= �3RFn /4E��2/3.
Since, the substrate material is a viscoelastic material, to ac-
count for the viscoelastic response, we replace E� by E�

+

�

D ż, where 
� refers to the bulk viscosity of the PMMA.30

Further, due to the normal load, there can be plastic defor-
mation �of PMMA� when the load and contact area are such
the stress 	=Fn /�Rz is larger than the compressive yield
stress 	y,n. Again using the phenomenological relation �̇p
= �̇0�	 /	y�q, we can write the plastic strain rate contribution
to be −


�

D ż�
Fn

	y,n�Rz �q. q is an appropriate exponent for the
compressive deformation. Finally, while the tip creeps in the
z direction, contact area and hence the position of tip center
x, also creep in the x direction due to shear force F. Noting
that z=z�x�t� , t�, we get an additional creep contribution
c
�ẋ /D. Here dz

dx =c is taken to be a constant. �It must stated
that the dependence of z on x is not known.� In general, dz

dx
would be a function of z which has been assumed to be
constant in this case.� Combining these contributions, we
have

mz̈ = Fn −
4

3
R1/2z3/2�E� +


�

D
ż�1 − 	 Fn

	y,n�Rz

q� +

c
�

D
ẋ

− F
z1/2

�2R
. �3�

The last term is the normal component of the shear force.
Equations �1�–�3� support stick-slip dynamics for a range of
parameter values.

In our model, stick-slip instability arises due to a feedback
loop. To see this, we note that when ẋ is small �stuck phase�,
F increases �see Eq. �2��. Concomitantly, z approaches the
equilibrium value at a rate controlled by 
�. Thus, the fric-
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tional resistance 	0Ax,0z3/2 and contact charging resistance
��Rz �2

2��0
increase. Since ẋ�Va, F keeps increasing till the

threshold for slip is crossed triggering an abrupt increase in ẋ
due to plastic flow �fifth term in Eq. �1��. This causes the
force to drop as ẋ overshoots beyond Va during the slip du-
ration �see Eq. �2��. The whole process starts all over again
since the force has dropped below the threshold for slip.

Assuming a finite time scale for charging after contact is
established between the tip and PMMA, the equation for the
charge density � at the contacting surface is

�̇ =
�m

ta
	1 −

�

�m

 −

ẋ

D
� , �4�

where �m is the saturation value and ta a time constant. Once
slip occurs, contact charge is transferred to the PMMA sur-
face at a local slip rate denoted by the last term in Eq. �4�.
Using Eq. �4� and the fact that charging can only occur at the
area of contact determined by the load, we get the equation
for the total charge �t=�Rz�,

�̇t =
��Rz�m − �t�

ta
+ �t

ż

z
− ẋ

�t

D
. �5�

The last term is the charge transferred to the PMMA surface
during a slip event. Then, the charge transferred during each
slip event is given by �̇d= ẋ�t /D.

Scaled equations

We cast the equations for Model I �i.e., A�z�=A0� in a
dimensionless form using a basic length scale D=Fmax /K�

and a time scale determined by �2=K� /m. Then, the scaled
variables are x=XD, z=ZD, Fs=F /K�D, 	̄0=	0Ax,0D1/2 /K�,

F̄n=Fn /K�D, the normal spring constant K�= 4
3 �RD�1/2E�,


̄�= 4
3 �RD�1/2�
� /K�, 
̄� =A0
�� /K�D, 	̄y =	y,n�R /K�, va

=Va /�D, and Ta= ta�. Defining the scaled total charge �
=�RDZ� /�0 with �0= �2���0RD2K��1/2 and �m
=�RD�m /�0, the dimensionless equations are

Ẍ = Fs − 	̄0Z3/2 − �
�2

Z
− 
̄�Ẋ�1 − � Fs

	̄0Z3/2 + �
�2

Z
�

n

� , �6�

Z̈ = F̄n − �K�

K�

+ 
̄�Ż�1 − 	 F̄n

	̄yZ

q� + c
̄�ẊZ3/2

−� D

2R
FsZ1/2, �7�

�̇ =
�mZ − �

Ta
− Ẋ� +

Ż

Z
� , �8�

Ḟs = va − Ẋ . �9�

The scaled equation for charge transferred �to the substrate�
is �̇d= Ẋ�. As there is only one way coupling between �X ,Z�
variables and � and �d, the instability domain of Eqs.
�6�–�9� are nearly the same as the stick-slip model �Eqs.
�1�–�3�� for �m�10−5 C /m2 reported in Ref. 17. However,
when the charge levels are much higher, the threshold for
slip increases and the instability domain is altered from that
at low levels of charge. For Model II, the scaled equation for
X is given by

Ẍ = Fs − 	̄0Z3/2 − �
�2

Z
− 
��Z

3/2Ẋ�1 − � Fs

	̄0Z3/2 + �
�2

Z
�� ,

�10�

where 
��=ax,0D1/2�
� /K�. Note that except for 
��, all other
parameters are the same. Most numerical results are for n
=q=1. For the sake of completeness, we have presented re-
sults for n=1.75, q=2 also.

Table I shows the parameter values �for Model I�. Values
in the second row are from.17 As no material parameters are
given in Ref. 17�, values of unscaled parameters �fourth row�
are taken from the literature wherever available. In particu-
lar, viscosity 
 that depends on molecular weight, tempera-
ture, shear rates, etc., is not available. The magnitude of 	0
��	s, where 	s is the shear yield stress and ��0.3 is the
friction coefficient. Yield stress depends on strain rate.26 In
addition, �for PMMA valid also for polymers in general�
compressive yield stress is always higher than the shear yield
stress.26 The range of values of these quantities are listed in

TABLE I. Parameter values used for the model. Values in the second row are from Ref. 17. See text.

R
�mm�

m
�kg�

K�

�N/m�
Fn

�mN�
Va

��m /s�
�m

�C /m2�

0.5 10−5 47 68–106 �10 1.6710−5

E�

�GPa�

�

�Pa�

�

�Pa�
	0

�MPa�
	y,n

�MPa�
�0

�nC /m2�

1–3 ¯ ¯ 0.1–10 1–50 3.0

K� 
̄� 
̄� 	̄0 	̄y �m

�106 102 8108 1.0 2500 0.0167
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the fourth row. The scaled parameters used for the calcula-
tions are in the last row. Other parameters used are A0�a2

�10−10 m, �=3.3, va=1.4510−5, Ta=2, and c=0.122.
Choosing Fmax=47 mN gives D=10−3 m and thus the range

of F̄n corresponding to 68–106 mN is 1.446–2.26.

IV. RESULTS

We first examine the stability of the uniform sliding state
for Model I �Eqs. �6�–�9�� or for Model II �Eqs. �7�–�10��.
Here also we use n=q=1 for simplicity in calculation. As
stated earlier, for charge levels of ��10−5 C /m2, the con-
tribution from the third term in Eq. �6� �or Eq. �10�� is small
compared to the frictional term. �See Table I and note that �
approaches its saturation value given by �mZasy, where Zasy
is the near saturation value of Z determined by the balance

between F̄n and K�Z3/2 /K�.�. Thus, we can conveniently ex-
amine the stability of Eqs. �6�, �7�, and �9� �or Eqs. �7�, �9�,
and �10�� by dropping the charge contribution. A standard
way is to carry out the stability analysis of these equations in

the steady-state sliding conditions �i.e., Ẋ=va , Ẍ=0, Ż=0

and Z̈=0 valid in most piezocontrolled SFA situations� is to
find the eigenvalues of the linearized system of equations.
However, it turns out that even the calculation of fixed points
is messy and the expressions are complicated, forcing us to
carry out the analysis numerically �not presented here�. In-
stead, a simpler method is find Fs as a function of the pull

velocity29 in the steady state. Setting Ẍ=0 in Eq. �6� �or Eq.

�10��, both Model I and II give Fs= 	̄0Z3/2. Setting Z̈= Ż=0,
we get

Z3/2 =
F̄n

�K�

K�

+ c
̄�va� , �11�

where to simplify the calculations, we have dropped the term
� D

2RFsZ1/2 in Eq. �7� as this term is small compared to
K�

K�
Z3/2. Using this in Fs= 	̄0Z3/2, we get

Fs =
	̄0F̄n

�K�

K�

+ c
̄�va� . �12�

Clearly dFs

dva
is negative even from very small values of the

pull velocity va. Thus, the steady sliding state is unstable.

However, there is a lower cut off in va that can be calculated
once � D

2RFsZ1/2 is included. This ensures stick-slip oscilla-
tions for the systems of equations. Note that the static fric-
tion threshold is obtained by setting Ẋ=va=0 which gives

Fs=
	̄0F̄nK�

K�
. The analysis also shows that the static friction is

larger than the sliding friction.
We now consider the numerical solution of Eqs. �6�–�9�.

The force-displacement curve is shown in Fig. 1�a� for F̄n
=2.0 �Fn=94 mN� along with the cumulative charge trans-
ferred to the substrate �d. Clearly, the mean force Fs gradu-
ally increases and saturates, a feature seen in experiments
�Fig. 3�a� of Ref. 17�. Further, the average slope of �d as a
function of time �in the asymptotic regime� is proportional to
that for the displacement X. Using a proper scale factor �s,
these two curves can be made to collapse onto a single curve
shown in Fig. 1�b� for �s=3.37104. Thus, the model re-
covers the correlation between the stick-slip events and
charge transfer.

We now examine the influence of the normal force F̄n. We
have calculated displacement X and cumulative charge trans-
ferred �d for F̄n=1.446–2.26 �Fn=68–106 mN�. In each
case, X and �d curves collapse onto a single curve for a

proper choice of the scale factor �s. In particular, for F̄n
=1.446 and 2.26 the values of �s, respectively, are 4.18
104 and 3.09104. Then, the ratio of the maximum devia-
tion �1.09104� to the mean �3.635104�, is �30%. This
compares well with 25% scatter in � in experiments for Fn
=68–106 mN �Fig. 3�b� inset of Ref. 17�. This shows that
the change in �s �equivalently �� is small for the limited

range of normal loads considered �F̄n=1.446–2.26 or Fn
=68–106 mN�.

In our model, as An�Fn
2/3, we expect the scale factor � to

depend on the load. However, the area changes by a factor
1.34 when Fn is changed from 68 to 106 mN which translates
to a small change �decrease� in � �or equivalently �s�. How-
ever, for higher load levels the value of the scale factor �s

does change significantly. To see this, consider a much

higher load level, say F̄n=3.5. The scale factor for this case
is �s is 2.34104, which falls well outside the mean value of

�s for the limited load range F̄n=1.446–2.26. A plot of the

force-displacement curve is shown in Fig. 2�a� for F̄n=3.5
along with the cumulative charge transferred to the substrate
�d. Thus, the lack of dependence of � on load is clearly due
to the limited range of loads studied in Ref. 17. The plot also
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FIG. 1. �Color online� �a� Plots of scaled force and cumulative charge transferred to the substrate. �b� Collapse of the mean displacement

X and charge transferred �d for F̄n=2.0 for a scale factor �s=3.37104.
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shows that the model predicts fewer stick events on an aver-
age with increase in Fn for the same scan length, a feature
taken as a support for electronic origin of friction.17 The
above features emerge due to the separation of time scales of
the stick �charging� phase and the slip �charge transfer�
phase.

As stated earlier, at the charge-density level of
108 charges /mm2, the slip threshold is controlled by the
friction threshold Ax,0	0z3/2. However, when � is increased,
the onset of the first force drop increases. A plot of the force-
displacement curve is shown in Fig. 2�a� for �=5

109 charges /mm2 keeping F̄n=2.0. �The cumulative
charge transferred to the substrate �d is also shown.� It is
clear that the threshold for the first force drop as also the
average asymptotic value of Fs has increased from those for
�=108 charges /mm2. �Compare with Fig. 1�a�.�

The results of Model II are very similar to those of
Model I as stated earlier. To see this, we first note that the
equation for X �Eq. �10�� for Model II differs from that of
Model I �Eq. �6�� by a factor Z3/2. However, the near satura-
tion value of Z is almost entirely controlled by Eq. �7�. Thus,
the value of 
�� where the instability occurs can be estimated
by inserting the near saturation value of Z in 
̄� =
��Z

3/2. This
gives a value 
���4106. The rest of the parameters are the
same. A plot of the force-displacement curve shown in Fig. 3

for F̄n=2.0. For the sake of comparison, we have also shown
the force-displacement curve for Model I on the same plot as
a dashed line. As can be seen, except for a phase factor, the
two curves follow the same behavior.

The above calculations are for n=q=1. However, in gen-
eral, they can be different from unity. Figure 4 shows the

force-displacement curves for both Model I and II for n
=1.75 and q=2. Again the difference between the two mod-
els is only in the phase.

We now consider estimating the value of the scale factor
�. Since the force and charge transferred curves for a given
scan length collapse onto a single curve only in the
asymptotic stick-slip regime �Fig. 1�b��, we can use ẋ�Va
valid on an average. Using this in

� K�ẋdt = �� �̇ddt = �� �ẋ�t/D�dt �13�

gives

K�D � ��Rzasy�asy , �14�

where �asy is the mean value of � ��→�m� in the asymptotic
stick-slip regime. Using zasy and �m leads to ��50 eV /Å
for Fn=94 mN. This value is high even after discounting the
ideal nature of the model.

This prompted us to look for possible contributions that
affect the scale factor �. A cursory look at contact charge
image in Fig. 2 of Ref. 17 shows that the mean charging
radius Rc is surprisingly large, typically 10–20 times the con-
tact radius a with charge density ��1.6108–2.4
108 charges /mm2. While the authors make no comment
on such a high value of charging radius, one possibility is
that charge deposited spreads �possibly after the slip event�
due to electrostatic repulsion.21,22 However, the model uses
the natural choice that charging area is equal to the contact
area for that load. Thus, independent of the physical causes
for such a large charging area, we should either use a larger

0

1.5x 10
−4

F
s

35 70
0

4.5
x 10

−8

time

Σ dforce charge

(a)

40 80
0

2.2x 10
−4

F
s

0

15
x 10

−7

time

Σ d

force

charge

(b)

FIG. 2. �Color online� �a� Plots of scaled force and cumulative charge transferred to the substrate for F̄n=3.5. �b� Plots of scaled force
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contact area �An with ���
Rc

a �2�100–400 or use higher
charge density �by a factor �� keeping the contact area fixed.
Using �An in place of An, we get ��0.5–0.125 eV /Å. This
value is consistent with the reported value. Finally, we note
that the value of � is nearly the same for smooth sliding
conditions as ẋ=Va is exact.

Another factor that affects contact charging is the surface
roughness. The influence of surface roughness on friction is
well known in tribology. Several models have been proposed
to calculate the contribution arising from roughness.35–37 The
topic has been revisited recently with a view to accommo-
date the influence of a hierarchy of roughness scales.38 How-
ever, for the load levels considered here, it is easy to show
that this is likely to contribute about 10%.38 Here, it may be
relevant to point out that roughness in this case is likely to be
dynamical due to the sliding over long intervals of time.4

V. SUMMARY AND DISCUSSION

In summary, we have developed a model for the stick-slip
dynamics observed when the tip of the cantilever of a surface
force apparatus is dragged on a substrate. Equations of mo-
tion for the center of the contact area and penetration depth
are set up by considering the tip as a single smooth asperity
contacting with a smooth surface for which contact mechan-
ics is applicable. Further, the time dependent contributions
arising from viscoelastic nature of the PMMA substrate and
possible plastic deformation of the softer PMMA are in-
cluded. The model exhibits stick-slip dynamics for a range of
values of the parameters. To account for the contact charging
at the area of contact, these equations are coupled to an equa-
tion of motion for the total contact charge developed on con-
tact. Charging occurs during the stick phase and transfer of
charge to the substrate occurs during slip phase.

The model captures several features of the experiment.
First, the correlation between the stick-slip events and
charge deposited on the PMMA substrate is reproduced. This
is to be expected as the contribution from contact charging
��nN� is orders of magnitude smaller than the static friction
threshold ��mN� or even sliding frictional threshold. Sec-

ond, for higher load, the model predicts fewer events for the
same scan length. Third, lack of dependence of the scale
factor � on normal load observed in experiments is traced to
the small range of values studied in Ref. 17. Indeed, Eq. �14�
shows that the scale factor � is inversely proportional to the
area of contact for the load. Fourth, in the model, contact
charging is equal to the contact area for the load. If this
relation is used, the magnitude of the scale factor turns out to
be nearly 50 times the experimental value. However, as dis-
cussed, the experimental charging area is ��100–400 times
the theoretically calculated contact area for that load �see
Fig. 2 of Ref. 17�. Using this value in place of the contact
area in Eq. �14� gives ��0.5–0.125 eV /Å. This value is
close to the measured value. Since the lack of dependence of
� on load together with the value of � has been interpreted to
mean that friction is controlled by contact charging, it is
necessary to check the lack of dependence of � over larger
range of normal loads before the suggestion can be taken
seriously. Further, the value of � should be nearly same for
smooth sliding conditions as well. All these features follow
naturally due to the separation of time scales of stick and slip
events. Stick-slip events are not affected by contact charging
for the charge levels in Ref. 17. Instead plastic deformation
of the interface material is the cause of slip. At a mathemati-
cal level the instability is due to a competition between the
viscoelastic and plastic deformation time scales with the ap-
plied time scale. As most experimental features are captured,
the model provides an alternate explanation for the results.
Lastly, the fact that sliding friction is lower than static fric-
tion comes out naturally from the equations of motion.

Finally, the model should be applicable to other stick-slip
phase observed in frictional sliding experiments where plas-
tic deformation is significant, including stick slip observed
during scratching of polymer sheets.39–41
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